Stoichiometric Calculations: Gram to Gram Calculations

The type of problems involved here can be solved easily with 2-3 simple steps. Use the Bridge Method for solving only after the equation is balanced.

Never, ever assume that an equation is balanced.

Example Solution #1

During its combustion, ethane C_2H_6 , combines with oxygen O_2 to give carbon dioxide and water. A sample of ethane was burned completely and the water that formed has a mass of 1.61 grams. How much ethane, in moles and in grams, was in the sample?

Solution: 1. Set up the equation based on the words in the problem. Then balance it correctly.

$$2 C_2H_6 + 7 O_2 ----> 4 CO_2 + 6 H_2O$$

- **2**. Compute the needed formula molecular masses. We need the molecular mass for water and for ethane. $H_2O = 18.02$ g.mol; $C_2H_6 = 30.08$ g/mol
- **3**. Draw a roadmap outline the math steps that need to be taken:

Therefore this type of question requires a three step solution.

Step #1 Convert 1.61 grams of water to moles of water.

Step #2 Using the equation, compare the moles of water made from moles of ethane.

Step #3 Convert the moles of ethane back into grams of ethane.

Draw a roadmap outlining the mathematical steps that need to be taken:

moles of water -----> moles of ethane

\(\) \(

Math Step #1 Convert 1.61 grams of water into moles of water Moles = g/mm = 1.61 g/ 18.02 g/mol = 0.09 mol of water were used.

Math Step #2 The chemical equation shows us that 2 moles of C_2H_6 is needed to make 6 moles of water. Setup a ratio:

$$\frac{6 \text{ mol H}_2\text{O}}{0.09 \text{ mol x}} = \frac{2 \text{ mol C}_2\text{H}_6}{2 \text{ mol x}}$$

x = 0.03 moles of ethane are needed.

Math Step #3 Convert the moles of ethane back into grams of ethane. g = n * mm = 0.03 mol * 30.08 g/mol = 0.90 grams of ethane Finish off the question with a statement. 1.61 grams of water can be made from 0.03 moles of ethane or 0.90 grams of ethane.

Example Question #2 Calculate how many grams of $K_2Cr_2O_7$ are needed to make 35.8 grams of I_2 according to the following equation.

$$K_2Cr_2O_7 + 6 \text{ NaI} + 7 H_2SO_4 -----> Cr_2(SO_4)_3 + 3 I_2 + 7 H_2O + 3 Na_2SO_4 + K_2SO_4$$

The equation is already balanced but you should check it over just to be sure. Next calculate the molecular masses that you need. The question deals with iodine, I_2 , and potassium dichromate, $K_2Cr_2O_7$. Calculate the molecular masses for these only. The other parts of the equation can be forgotten about.

$$I_2 = 253.82 \text{ g/mol } K_2Cr_2O_7 = 294.20 \text{ g/mol}$$

Draw a roadmap outlining the mathematical steps that need to be taken:

moles of iodine -----> moles of potassium dichromate

V

grams of iodine grams of potassium dichromate

Math Step #1 Convert grams of iodine into moles of iodine.

moles = g/mm = 35.8 g / 253.82 g/mol = 0.14 moles of iodine

Math Step #2 Compare using the equation coefficients, the number of moles of potassium dichromate is need to make how many moles of iodine.

$$\frac{3 \text{ I}_2}{0.14 \text{ mol } x} = \frac{1 \text{ K}_2 \text{Cr}_2 \text{O}_7}{0.14 \text{ mol } x}$$

x = 0.05 moles of potassium dichromate

Math Step #3 Convert the moles of potassium dichromate back into grams of potassium dichromate.

g = n * mm = 0.05 mol * 294.20 g/mol = 14.71 grams

To make 35.8 grams of iodine you must start with 14.71 grams of potassium dichromate.

Worksheet 3.4: Stoichiometric Gram to Gram Calculations

1. The combustion of a sample of butane, C_4H_{10} (lighter fluid), produced 2.46 grams of water.

$$2 C_4 H_{10} + 13 O_2 ----> 8 CO_2 + 10 H_2 O$$

- (a) How many moles of water formed?
- (b) How many moles of butane burned?
- (c) How many grams of butane burned?
- (d) How much oxygen was used up in moles? In grams?
- 2. Terephthalic acid, an important raw material for making Dacron, a synthetic fibre, is made from para-xylene by the following reaction.

$$C_8H_{10} + 3 \ O_2$$
 -----> $C_8H_6O_4 + 2 \ H_2O$ para- special conditions terephthalic xylene acid

How much terephthalic acid could be made from 154 grams of para-xylene in moles? In grams?

3. Adipic acid, a raw material for nylon, is made industrially by the oxidation of cyclohexane.

$$5 O_2 + 2 C_6 H_{12}$$
 -----> $2 C_6 H_{10} O_4 + 2 H_2 O$ cyclohexane special conditions adipic acid

- (a) How many moles of oxygen would be needed to make 40.0 moles of adipic acid by this reaction?
- (b) If 164 grams of cyclohexane is used, what is the theoretical yield of adipic acid in moles? In grams?
- 4. Aluminum oxide, Al₂O₃, a buffing powder, is to be made by combining 5.00 grams of aluminum with oxygen, O₂. How much oxygen is needed in moles? In grams?
- 5. Calculate how many grams of iron can be made from 16.5 grams of Fe_2O_3 by the following equation.

$$Fe_2O_3 + 3\ H_2 ----> 2\ Fe + 3\ H_2O$$

6. Iodine chloride, ICl, can be made by the following reaction between iodine, I_2 , potassium iodate, KIO_3 , and hydrochloric acid.

$$2 I_2 + KIO_3 + 6 HC1 - 5 IC1 + KC1 + 3 H_2O$$

Calculate how many grams of iodine are needed to prepare 28.6 grams of ICl by this reaction.